На протяжении ХХ века интерес широкой публики к космическим исследованиям то угасал, то вспыхивал с новой силой. Но внимание профессионалов оставалось всегда примерно одинаково пристальным. И неудивительно — немного есть в деятельности ученых областей, где фактор многолетних систематических и непрерывных наблюдений играл бы такую же большую роль, как в астрономии. Арсенал средств, с помощью которых эти наблюдения ведутся, на протяжении столетия невероятно расширился. Многие современные приборы весьма сложно устроены, в них используются довольно тонкие недавно обнаруженные эффекты, и трудно было предположить, что в начале XXI века появится новый мощный оптический инструмент, принцип действия которого известен столетия. Речь идет о телескопе-дифракторе — его идею уже пять лет развивает во Франции Лоран Кёклен (
Тройственное движение света
Первые телескопы — правильнее назвать их подзорными трубами — появились в конце XVI — начале XVII века в Голландии . С двух концов у них были вставлены линзы от очков, в результате чего далекие предметы казались значительно более близкими. Профессия шлифовальщика стекол к тому времени уже не были диковиной, линзы использовались для самых разных целей — главным образом, для коррекции зрения и разглядывания мелких предметов. Тем не менее линзы того времени были очень низкого качества, и подзорная труба, сделанная из них, годилось только для забавы.
Галилео Галилей (Galileo Galilei, 1564–1642) в 1609 году объявил себя изобретателем подзорной трубы, и в этом почти не было преувеличения: он достиг большого искусства в шлифовании стекол, и изготавливаемые им линзы были значительно лучше голландских. С их помощью он уже смог сделать то, что с полным правом можно было назвать телескопом. Чрезвычайно важным является то обстоятельство, что телескоп Галилея был создан ученым; голландские же трубы были изготовлены практиками — очковых дел мастерами. Телескоп Галилея пока ещё нельзя назвать телескопом-рефрактором, но и в его линзах свет преломляется, а эффект «приближения» (увеличения угловых размеров рассматриваемого удаленного объекта) достигается за счет четырехкратного преломления света на четырех границах стекла и воздуха. Систему линз, используемую в современных телескопах-рефракторах, спустя несколько лет изобрел немецкий математик и астроном Иоганн Кеплер (
Но на границе двух сред свет не только преломляется, но и отражается. И кривое зеркало может работать ничуть не хуже, чем линза, а может — даже лучше. Автор идеи — Исаак Ньютон (
Между тем, ещё при жизни Ньютона выяснилось, что эти два «движения» — отражение и преломление — не исчерпывают всех возможных движений света. Болонский иезуит Франческо-Мария Гримальди (
Впоследствии это «третье движение» разделилось на
Зона тени
29 июля 1818 года французский физик Огюстен-Жан Френель (
Именно волновая теория позволила Френелю объяснить следующие дифракционные явления. Если свет от точечного источника проходил через круглое отверстие, то внутри светового пятна наблюдались концентрические темные кольца, а если на пути луча помещался светонепроницаемый кружок, то кольца были, наоборот, светлыми. Эти кольца получили название зон Френеля: если в середине круга темное пятно, то все темные кольца — нечетные зоны, а светлые — четные. Если в середине — светлое пятно, то все, соответственно, наоборот. Разработанная Френелем математическая теория дифракции для подобных случаев с не очень сложной геометрией установки позволяла обойтись без сложных расчетов, и использовать так называемый «метод зон Френеля».
Несколько позже выяснилось, что прозрачная плоская пластина, если прорезать в ней концентрические кольца в соответствии с расположением «зон Френеля», приобретет некоторые оптические свойства собирающей линзы. У такой «линзы» — получившей название зонной пластинки Френеля (иногда её называют ещё зонной пластинкой Соре) появятся определенные положительные свойства — в частности, у нее окажется не один фокус, а много. Но за это у нее будут и отрицательные — для каждой длины волны фокус будет свой. Именно это, последнее обстоятельство решало вопрос: использовать такую «линзу» в телескопе невозможно по тем же самым причинам, по которым, как думал Ньютон, не удастся использовать стеклянные линзы.
В настоящее время все крупные исследовательские телескопы — зеркальные. Одно из их основных преимуществ — относительная простота изготовления зеркал большого диаметра. Так, у самого мощного на данный момент времени зеркального телескопа размер зеркала достигает 10 м. Из всех функционирующих в настоящее время зеркальных телескопов у тринадцати
По счастью, Ньютон в отношении рефракторов ошибся: многослойные линзы, склеенные из разных сортов стекла, собирают все лучи в одной точке, независимо от длины волны. И все же телескопы-рефлекторы обладают множеством преимуществ перед ними — зеркала и меньше весят, и вносят меньше искажений в изображения изучаемых астрономами космических объектов. Вполне естественно, что и в качестве орбитальных телескопов используются рефлекторы, в то же время размер используемого в орбитальном телескопе зеркала ограничен высокой стоимостью доставки грузов на околоземную орбиту.
И только в последние несколько лет появились соображения, как использовать в телескопе зонную пластину Френеля. Соответствующий телескоп, если он когда-нибудь будет построен, можно будет называть телескопом-дифрактором.
Фокус с фокусом
Зонная пластинка Френеля представляет собой совокупность непрозрачных и прозрачных концентрических колец. Внешние и внутренние радиусы колец совпадают с радиусами так называемых зон Френеля; размеры этих зон подбираются так, чтобы расстояние от точки наблюдения до «дальнего» края одной зоны превышало расстояние до «ближнего» края той же зоны ровно на половину длины волны. В этом случае волны от соответствующих точек соседних зон приходят в точку наблюдения (её называют фокусом) «в противофазе» и «гасят» друг друга. Соответственно, волны, приходящие от зон только с четными номерами 2, 4, 6, … (или от зон с только нечетными номерами 1, 3, 5, …) будут находится «в фазе» и, соответственно, усиливать друг друга.
Пусть в нашем распоряжении имеется точечный источник света, а между ним и точкой наблюдения размещена зонная пластинка и на её поверхности в месте нахождения зон Френеля с нечетными номерами имеются прозрачные кольца. Четным же зонам Френеля соответствуют непрозрачные кольца. Тогда волны от всех открытых зон (прозрачные кольца) усилят друг друга и освещенность в фокусе возрастет. Практически тот же эффект будет наблюдаться, если зонам с четными номерами соответствуют прозрачные кольца, а зонам с нечетными номерами — непрозрачные. Таким образом, зонная пластинка представляет собой устройство для фокусировки света, аналогично линзе и зеркалу. Проблема, как говорилось, заключается в том, что для разной длины волны зоны Френеля должны находиться в разных местах.
Способ обойти эту трудность и придумали Кёклен и его коллеги из Обсерватории южных Пиренеев (
Изображения, получаемые с помощью зонной пластинки, отличает также высокая разрешающая способность, что делает возможным наблюдение слабо освещенного объекта в непосредственной близости от ярко освещенного. Последнее обстоятельство весьма существенно; благодаря ему у астрономов появляется принципиальная возможность наблюдать и получать изображения экзопланет. В настоящее время сделать это чрезвычайно трудно, поскольку экзопланеты, являющиеся слабыми источниками света, практически неразличимы на фоне своих «родительских» звезд.
По имеющимся расчетам, орбитальный телескоп на основе 30-метровой зонной пластинки обладал бы достаточными возможностями для поиска планет «земного размера», находящихся на расстоянии 30 световых лет от нашей планеты. С его помощью можно было бы также исследовать спектр отражаемого планетами света для поиска признаков жизни на этих планетах — к примеру, атмосферного кислорода. В то же время развернуть на околоземной орбите 30-метровый лист фольги будет весьма непросто.
По-видимому, именно по этой причине авторы телескопа-дифрактора пока предлагают более скромные варианты. Так, проект создания телескопа с зонной пластинкой из листа фольги размером в 3,6 м был представлен на конкурс, который Европейское Космическое Агентство (
Проект, однако, не вошел даже в число финалистов, что вызвано, в частности, очевидными проблемами на заключительной стадии монтажа телескопа-дифрактора. Действительно, фокусное расстояние у зонной пластинки получается слишком большим — изображение формируется на расстоянии порядка километров от нее, а потому комплект инструментов для исследования изображения должен доставляться на орбиту отдельно. При этом пространственное положение спутника с зонной пластиной и спутника, фиксирующего изображение, должно поддерживаться постоянным с точностью до миллиметров. Пытаясь обойти эти проблемы, Кёклен предлагает поместить оба аппарата в одну из так называемых точек Лагранжа , в которой силы гравитации со стороны Солнца и Земли уравновешены. В окрестности этой точки поддерживать аппараты на постоянном удалении будет существенно проще.
Бен Оппенгеймер (
Пока же астроном из Тулузы Лоран Кёклен проводит демонстрационные эксперименты, показывая реализуемость своего проекта. Ему и его коллегам удалось, в частности, получить изображения небольших объектов с помощью зонных пластинок, изготовленных из стали и размером не превышающих пластиковую карточку. В течение этого года группа Кёклена планирует сконструировать и продемонстрировать научному сообществу небольшой телескоп на основе уже 20-сантиметровой зонной пластинки.