Больше бесконечности может быть другая бесконечность
Может ли одна бесконечность быть больше другой? Если да, то как их сравнить? На этот вопрос ответил великий немецкий математик Георг Кантор.
Поясним его метод на примере конечных чисел. Как сравнить число студентов в аудитории с числом стульев, не пересчитывая их? Попросим каждого студента сесть на свободный стул. Если останутся незанятые стулья, значит, их больше, чем людей. А если останутся стоящие студенты, то наоборот.
Кантор понял, что этот же метод применим и к бесконечным множествам. Рассмотрим, например, множество натуральных чисел (1, 2, 3 и так далее) и сравним его с множеством каких-нибудь сепулек. Если каждой сепульке можно присвоить уникальный номер (натуральное число), значит, сепулек не больше, чем натуральных чисел. Если при этом еще и не останется свободных номеров, то сепулек в точности столько же, сколько натуральных чисел.
Количество натуральных чисел — это наименьшая из всех бесконечностей. Следующая бесконечность в иерархии — количество действительных чисел (включая иррациональные вроде числа пи или квадратного корня из двух). И это только первые две ступени бесконечной лестницы возрастающих бесконечностей.