Ваш браузер устарел, поэтому сайт может отображаться некорректно. Обновите ваш браузер для повышения уровня безопасности, скорости и комфорта использования этого сайта.
Обновить браузер

Как ученые ловили «нейронов-призраков» и открывали сетчатку: воспоминания нейробиолога

Как мы видим? Ответ на этот простой вопрос заставил поломать голову не одну сотню исследователей. Это история о том, как ученые пытались объяснить феномен зрения

Обсудить
Как ученые ловили «нейронов-призраков» и открывали сетчатку: воспоминания нейробиолога
Источник:
Puwadol Jaturawutthichai / Alamy via Legion Media

Мозг — это не просто машина связей

Тихая революция, произошедшая в нейробиологии в XXI в., была связана с возрождением анатомии. К тому времени некоторые считали анатомию устаревшей наукой, в которой не было места для прорывных открытий. Тем не менее никто не отрицал важности изучения структуры головного мозга. 

Работа основоположника и покровителя нейробиологии Сантьяго Рамона-и-Кахаля была всецело основана на нейроанатомии. Студенты-медики на протяжении всех последних поколений зубрили названия отделов, ядер и трактов мозга. В широком смысле нейроанатомия, или, как ее теперь иногда называют, структурная нейробиология, говорила нам следующее: мозг — это машина связей и все, что он делает, в конечном итоге сводится к тому, как соединены между собой различные его части.

Как ученые ловили «нейронов-призраков» и открывали сетчатку: воспоминания нейробиолога
Сантьяго Рамон-и-Кахаль (1852-1934)
Источник:
Pictorial Press Ltd / Alamy via Legion Media

На рубеже ХХ–XXI вв. ряд технических достижений привел к скачку в понимании анатомии мозга. Первым было значительное улучшение разрешения микроскопов, что было связано с изобретением так называемого конфокального микроскопа. 

Вторым стало развитие способов визуализации клеточных компонентов. Магические инструменты молекулярной биологии дали нам возможность создавать маркеры даже для самых крошечных частей субклеточного аппарата, а конфокальные микроскопы позволили наблюдать за его работой.

Мы получили возможность видеть то, о чем раньше могли лишь мечтать: клетки в движении, плавающие в своей естественной среде; клеточные кластеры, где разные типы клеток светятся в темноте разными цветами, и т. д. Эти достижения позволили нам замахнуться на, как казалось ранее, немыслимое: составить полную опись всех нейронов головного мозга (и сетчатки, в частности), что должно было стать первым шагом на пути к распутыванию его замысловатой системы связей.

Загадочные нейроны

Проведенное Хайнцем Вессле исследование ганглионарных альфа- и бета-клеток, о котором я узнал на конференции во Флориде, показало нейробиологам, что мы можем подойти к изучению сетчатки с другой стороны: сначала составить полный список ее компонентов, а затем попытаться выяснить, какие функции они выполняют. Тем более что к тому времени у нас появились новые замечательные инструменты, которые позволяли это сделать.

Как ученые ловили «нейронов-призраков» и открывали сетчатку: воспоминания нейробиолога
Грушевидные нейроны (клетка Пуркинье) коры мозжечка, снятые при помощи флуоресцентного микроскопа
Источник:
Science History Images / Alamy via Legion Media

Одним из таких инструментов была иммуноцитохимия (ИЦХ). Этот метод, получивший широкое распространение с начала 1990-х гг., позволяет обнаружить присутствие практически любой белковой молекулы внутри клетки или ткани. Если вы когда-нибудь смотрели видео с завораживающими светящимися нейронами, знайте, что их, скорее всего, снимали с использованием иммуноцитохимии. Это довольно простая техника, которая обеспечивает потрясающую визуализацию.

Конечно, не обходится без трудностей и разочарований. Как-то моя лаборатория потратила целый год впустую из-за некачественного коммерческого реактива (в финансовом плане этот неэтичный поставщик обошелся американским налогоплательщикам почти в $300 000). Как бы то ни было, нейробиологи с головой погрузились в ИЦХ-исследования.

Благодаря иммуноцитохимии молодой новозеландский исследователь Дэвид Вэйни нашел свое призвание: он прославился своими потрясающе красивыми снимками, сделанными через микроскоп, так что в конце концов ушел из науки и начал карьеру фотографа.

При наличии подходящих ИЦХ-реагентов этот метод позволял увидеть через флуоресцентный микроскоп все клетки сетчатки, содержавшие конкретную молекулу-мишень. При малом увеличении перед вашим взором представало поле светящихся звезд на темном фоне. 

При большом увеличении можно было детально рассмотреть форму отдельного нейрона, его тонкие отростки, извивающиеся по сетчатке или ныряющие в глубь нее, его структуру связей с другими клетками. Но как найти вещества-реагенты с избирательным воздействием на конкретные молекулы, которые присутствуют в интересующих нас подтипах нейронов сетчатки? 

Это делалось (и делается до сих пор) методом научного тыка. Лучшими реагентами были и остаются синаптические нейромедиаторы: дофамин, наш старый знакомый ацетилхолин, серотонин и т. п., каждый из которых присутствует в относительно небольшом наборе нейронов сетчатки. 

(Разумеется, нейроны содержат намного больше различных молекул, предположительно десятки тысяч. Но большинство из них — особенно те, что отвечают за поддержание клеточной структуры и обеспечение клетки энергией, — присутствуют во многих типах клеток не только в сетчатке, но и в головном мозге и других частях тела. Поэтому для нас такие молекулы бесполезны.)

Как устроена сетчатка?

Итак, опубликовав 20–30 научных работ, наша группа накопила достаточно данных, чтобы составить список из дюжины различных типов клеток сетчатки. Каждый из этих типов клеток окрашивался с высокой степенью надежности, что давало нам возможность четко увидеть всю популяцию клеток этого типа по всей сетчатке отдельно от других нейронов.

Как ученые ловили «нейронов-призраков» и открывали сетчатку: воспоминания нейробиолога
Сетчатка глаза
Источник:
BSIP SA / Alamy via Legion Media

Мы могли измерить их размер, изучить их форму и структуру связей и сосчитать — что, хотя и звучит банально, лежало в основе настоящей науки, которая уводила нас от коллекционирования бабочек в виде отдельных «типичных» клеток и вела к пониманию общей схемы и, как следствие, того, какую функцию выполняют разные типы клеток в зрительной системе. 

Например, некоторые типы нейронов были очень малочисленны, но протягивали свои дендриты на большие расстояния по сетчатке. Это говорило о том, что эта популяция не могла быть вовлечена в передачу изображения с высоким разрешением. Низкая плотность клеток означала слишком крупные пиксели: каждая клетка передавала информацию о слишком большой области видимого мира, поэтому изображение, получаемое мозгом, должно было выглядеть состоящим из огромных расплывчатых пятен. 

И наоборот, некоторые типы крошечных клеток присутствовали в сетчатке в огромных количествах, и им была свойственна высокая плотность. Мы сразу же предположили, что эти клетки образуют канал передачи изображения высокого разрешения от фоторецепторов в мозг, и последующие исследования подтвердили наш вывод.

Таким образом, мы и другие лаборатории увлеченно изучали под микроскопом красивые светящиеся картинки и постепенно начинали понимать, как устроена сетчатка, — пока не столкнулись с проблемой отсутствия реагентов для окраски. Нам удалось найти всего несколько маркерных молекул, способных окрашивать конкретные типы клеток, а все остальное, что мы пробовали, не работало.

Темные пятна в «инструкции»

В комнате остался огромный невидимый слон: большая часть клеток, которые мы сумели идентифицировать, относилась к редким типам. Поскольку иммуноцитохимический метод позволял выделять сразу целые популяции, мы видели, что большинство этих типов клеток распределено по сетчатке с очень малой плотностью: существовали целые области, где маркерные молекулы не окрашивали ни единой клетки.

Как ученые ловили «нейронов-призраков» и открывали сетчатку: воспоминания нейробиолога

Если сравнить сетчатку с детской картинкой-раскраской, нам удалось раскрасить всего 20% ее поверхности, а остальные 80% оставались белым или, точнее, темным пятном.

Мы были обескуражены. Наше стремление разобраться в устройстве системы зрительной сигнализации ганглионарных клеток, казалось, наткнулось на непреодолимое препятствие: если мы не можем идентифицировать большую часть элементов системы, как мы можем надеяться узнать, каким образом эта система производит свои операции, такие как повышение контрастности, избирательность в отношении направления и т. п.?

Я признаю, что нашим желанием составить полный каталог нейронов сетчатки отчасти двигало простое любопытство. Представьте, что вам подарили старинные часы без инструкции по эксплуатации. Вас заинтересовало их необычное устройство. С функцией маятника все более-менее понятно. Но что делает каждая из этих блестящих латунных шестеренок и прочих деталей? Зачем они нужны? Сама Природа, этот божественный часовщик, дразнила наше любопытство.

Проблема с исследованием сетчатки и остальной части центральной нервной системы была в том, что, будучи окрашены неспецифическими красителями, все нейроны выглядели одинаково. Доступные универсальные красители высвечивали только тела клеток, тогда как именнотонкие нейронные отростки — дендриты, принимающие входные сигналы, и аксоны, посылающие сигналы другим клеткам, — делают каждый тип нейрона особым. 

Именно по этой причине изучение типов нервных клеток в прошлом страдало от отсутствия системности: нам приходилось работать с отдельными экземплярами, которые удавалось окрасить, и в наших теориях было слишком много места для случайности и догадок.

Мы считали, что в изучении сетчатки мы можем добиться прогресса. В отличие от многих других областей мозга, нам была известна ее функция. У сетчатки есть четко определенное начало и конец; информационные потоки текут через нее в одном направлении; она пространственно компактна — расстояние от фоторецепторов до ганглионарных клеток составляет всего около трети миллиметра.

На наш взгляд, было вполне достижимой целью создать карту всех клеток сетчатки. Сегодня такую карту всех нейронов и структуры их связей называют нейромом (neurome) — по аналогии с геномом, совокупностью генов живого организма. Но как подступиться к этой задаче? Перед нами лежала практически неизведанная территория.

Из книги Ричарда Маслэнда «Как мы видим? Нейробиология зрительного восприятия». М: «Альпина Паблишер», 2022

Подписываясь на рассылку вы принимаете условия пользовательского соглашения