Ваш браузер устарел, поэтому сайт может отображаться некорректно. Обновите ваш браузер для повышения уровня безопасности, скорости и комфорта использования этого сайта.
Обновить браузер

Плата за страх

15 июля 2006Обсудить
Плата за страх

Энергетические потоки в пространстве, или природная радиация, присутствовала на Земле всегда. Более того, она была и остается абсолютно необходимым фактором существования нашей планеты, и людям на протяжении сотен веков удавалось существовать с ней в мире и согласии.
А вот созданная в XX веке искусственная радиация стала для человечества первостепенной угрозой. С тех пор, как цепная ядерная реакция приобрела характер управляемой и легла в основу атомных технологий, мир узнал, что такое жизнь под знаком Ядерной беды.

Предыстория

Основоположнику ядерной физики англичанину Эрнсту Резерфорду человечество обязано знаниями о строении атома и радиоактивности. И хотя это явление было обнаружено еще в 1896 году французским ученым Антуаном Анри Беккерелем в ходе его экспериментов с урановыми соединениями, дальше этого ему пойти не удалось.

Первое искусственное деление ядер, основанное на Беккерелевских наблюдениях и показавшее, что излучение — это выход d-, в-, и з-лучей, провел в 1919 году именно Резефорд.

Он, облучив азот б-частицами урана, сумел превратить его в кислород.

Правда, этот процесс сопровождался поглощением тепла, а вот его выделение стало плодом трудов английских физиков Джона Дугласа Кокрофта и Эрнеста Томаса Синтона Уолтона, создавших первый в мире ускоритель протонов и осуществивших в 1932 году ядерную реакцию с помощью облучения литиевой пластины искусственно ускоренными протонами.

В том же году открытие англичанином Джеймсом Чедвиком нейтрона позволило осуществить цепную реакцию деления.

В 1938 году немецкие ученые Отто Ган и Фриц Штрасман добились распада атомного ядра под воздействием нейтрона на два (реже три) «осколка». А в 1942 году под руководством Энрико Ферми была проведена управляемая цепная ядерная реакция.

Если обратиться к сухим цифрам статистики, то вполне обоснованно можно сказать, что атомная энергетическая промышленность по сравнению с другими ее видами для тех людей, которые работают на ЭС, максимально безопасна. Доля погибших в результате аварийных ситуаций, произошедших на атомных электростанциях, ничтожно мала по сравнению с теми, кто явился жертвой аварий на газовых, гидро- и угольных ЭС.

Хотя тот, кто знает, какое количество жертв принес Чернобыль, вряд ли поверит в это безоговорочно. Опять же, если следовать статистике, число погибших, работавших в тот день, вернее, в ту ночь, на ЧАЭС, составило 31 человек, в том числе и шестеро пожарных из спецкоманды, обслуживающей станцию, принявших на себя основной удар смертоносной радиации. Всего же, по официальным данным правительств Украины, Белоруссии и России, в той или иной степени, по самым скромным подсчетам, пострадало более 9 миллионов человек. А полное количество жертв — в соответствии со специальным докладом ООН, посвященным оценке влияния аварии на окружающий мир, — можно будет посчитать не раньше 2016 года. Дело в том, что, по утверждению медиков, основной пик массовых индуцированных онкозаболеваний с наибольшей интенсивностью должен последовать через 25 лет после аварии — для ее ликвидаторов и через 50 — для жителей загрязненных территорий.

И все же, несмотря на столь ужасающие аргументы, ядерная энергия для жителей Земли является едва ли не самым перспективным видом топлива, особенно в том случае, если произойдет истощение природных запасов угля, газа, нефти и торфа, а такая тенденция наметилась уже в 60 — 70-х годах XX века. А вот запасов радиоактивного урана на Земле достаточно. К тому же этот вид топлива в результате специальной обработки способен воспроизводиться.

А между тем широкое использование ядерной энергии в мирных целях началось лишь в 50-х годах XX столетия. Сама же ядерная технология получила развитие в годы второй мировой войны, когда исследования в этой области были сосредоточены на создании атомной бомбы. Как мы знаем, впервые это «чудо техники» было апробировано американцами в 1945-ом. Хотя в те же военные годы был пущен и первый в мире «мирный» реактор, работающий по тому же принципу и используемый в целях производства электроэнергии. И сделали это те же американцы, осуществив процесс постройки и запуска ядерного реактора под руководством Энрико Ферми — лауреата Нобелевской премии 1938 года за открытия и исследования в области физики, в том числе и ядерной. В Европе первый ядерный реактор был запущен в 1946 году в Московском институте атомной энергии, основанном и возглавляемом в то время Игорем Васильевичем Курчатовым — руководителем работ по отечественной атомной науке и технике.

А первая в мире опытно-промышленная АЭС начала свою работу в июне 1954 года в городе Обнинске. Ее пуск положил начало новому направлению в энергетике, получившему мировое признание после Женевской конференции 1955 года.

Сейчас в мире производится столько же атомной энергии, сколько в 60-е годы XX века — всеми видами энергетических источников в совокупности. К 2000 году выработка ядерной энергии возросла до 2 447 миллиардов киловатт, что на 15% больше, чем в 1994 году.

Примерно одна тонна природного урана после необходимой переработки способна обеспечить получение 45 000 000 киловатт-часов — это же количество энергии получается при сжигании 20 000 тонн угля и 30 000 000 кубометров газа.

А при добыче урановой руды водный экологический баланс Земли, как это ни странно, нарушается гораздо меньше, чем при добыче угля.

С другой стороны, их строительство обходится намного дороже, чем, например, ТЭС или ГЭС. Да и ущерб, причиняемый выбросами и утечками радиоактивных изотопов, настолько велик, а ликвидация его настолько дорогостояща, что это не может не вызвать неоднозначного отношения мировой науки к эффективности использования атомной энергии.

Атомоходы

Главным источником энергии как на надводных, так и на подводных атомоходах, служит ядерная силовая установка. ЯСУ состоит из ядерного реактора с необходимым оборудованием и паро- или газотурбинной установки.

Первой стратегической величиной в 1949 году стала американская подводная лодка с ядерным реактором на борту. Первый атомоход невоенного назначения — советский ледокол «Ленин» (1959 год). Со временем стали строиться и более мощные атомные суда невоенного назначения — это атомные ледоколы «Арктика» и «Сибирь» в СССР, а также транспортные атомоходы «Саванна» (США), «Отто Ган» (ФРГ) и «Муцу» (Японии). И все же преимущественно ЯСУ получили распространение на подводных лодках.

Это объясняется тем, что для их работы не требуется кислород, а значит, подводные лодки могут очень длительное время находиться в состоянии погружения.

Помимо этого, ЯСУ дают возможность практически не ограничивать дальность плавания, развивать и поддерживать немалую скорость. К тому же компактность ЯСУ играет далеко не последнюю роль. Преградой для радиоактивного излучения реактора служат две защитные оболочки. Первая закрывает корпуса реактора, вторая — парогенераторное оборудование, систему очистки и контейнеры для отходов.

В общей сложности в мире на сегодня существует более 200 судов различного назначения с 400 ядерными энергетическими установками на борту. Россия располагает 8 атомными ледоколами.

Ядерный реактор

Это устройство предназначено для осуществления и поддержания управляемой цепной ядерной реакции.

Принципы использования ядерных реакторов для производства электричества те же, что и большинства других подобных систем.

Энергия, полученная при расщеплении атомов, используется для нагрева воды и получения пара. Пар приводит в действие турбины, которые и производят электроэнергию. Основными составляющими элементами ядерного реактора являются:

Активная зона , где сосредоточено ядерное топливо и происходит реакция деления ядер, сопровождающаяся выделением энергии;

Теплоноситель — жидкое или газообразное вещество, необходимое для поддержания нужной температуры при вылете из активной зоны;

Отражатель нейтронов — приспособление для уменьшения потерь нейтронов при вылете из активной зоны;

Биологическая защита — система охраны работающих на АЭС людей от воздействия ядерных излучений.

В активной зоне большинства типов реакторов находятся, помимо топлива, модератор (материал, замедляющий нейтроны, полученные при расщеплении, для еще большего их расщепления; модератором часто служит так называемая «тяжелая» вода или графит) и контрольные стержни , сделанные из поглощающих нейтроны материалов, таких как кадмий, гафний или карбит бора. Стержни размещаются в активной зоне или достаются из нее для контроля уровня реакции или ее остановки. Ядерные реакторы делятся на два основных типа — гетерогенный и гомогенный. Первый — наиболее распространен и представляет собой реактор, в котором ядерное топливо распределено в активной зоне дискретно в виде блоков, между которыми находится замедлитель нейтронов.

Второй тип реакторов — гомогенный — применяется гораздо реже из-за технологических и конструктивных сложностей. В его основе лежит принцип, при котором ядерное топливо и замедлитель образуют однородную (по ядерно-физическим свойствам) среду для нейтронов. Эта смесь может быть жидким раствором (или суспензией) ядерного топлива и замедлителя.

Цикл ядерного топлива

Основным энергоносителем АЭС является природный уран (U). Его производство — процесс, называемый циклом ядерного топлива. Начинается он с добычи урановой руды, которая затем перемалывается, образуя новое соединение — оксид урана (U3O2), или желтый кек, подвергающийся обогащению. Для этого его переводят в газообразную форму — в состояние уранового гексафторида (UF6). Обогащение — процесс необходимый, так как только 0,7% природного урана подвергается расщеплению, необходимому для производства энергии.

Природный уран содержит два изотопа (разновидности атомов одного химического элемента, атомные ядра которых содержат одинаковое число протонов и разное число нейтронов), один из них — 235U — способен расщепляться, другой — 238U — нет. Для функционирования ядерного реактора необходимо, чтобы концентрация 235U была несколько большей, чем содержится в природном виде. В процессе обогащения и происходит доведение концентрации этого изотопа до 3,5 — 5%, при этом нерасщепляемый изотоп удаляется на 85%.

Это достигается разделением уранового гексафторида (UF6) на два потока: первый, обогащенный до нужного уровня, называется низкообогащенным ураном, а второй, обедненный, — «хвостами».

Далее изготовливаются тепловыделяющие элементы — ТВЭЛы. После того как обогащенный уран (UF6) поступает на специализированное предприятие, происходит процесс его перевода в двуокись урана (UO2), лежащий в основе производства гранул, по форме напоминающих очень большие таблетки, получаемые путем прессования UO2 при температуре более 1 400°C. Затем «таблетки» помещают в специальные стержни, в оболочке которых используются слабо поглощающие нейтроны материалы (цирконий и алюминий). Готовые к употреблению ТВЭЛы объединяются в реакторах в особые группы, образующие так называемые сборки, или кассеты.

Внутри ядерного реактора атомы 235U, упакованные в ТВЭЛы, расщепляются и высвобождают энергию, трансформирующуюся в электрическую.

Отработанное топливо удаляют из реактора спустя год с момента загрузки. Топливные стержни, продолжающие излучать радиацию, помещают в водные резервуары, остужающие их и «смягчающие» тем самым уровень радиации. Так стержни хранятся от нескольких месяцев до нескольких лет.

После отработки ядерное топливо содержит в себе 95% 238U, около 1% не прошедшего расщепления 235U, 1% плутония (вновь образовавшееся ядерное топливо) и 3% высокорадиоактивных продуктов деления. Воспроизводство отработанного топлива — это его очистка от радиоактивных продуктов деления, а также извлечение неиспользованной части урана и плутония. На обогатительном заводе происходит повышение содержания 235U.

Те же продукты расщепления, которые были отделены в процессе воспроизводства, после выпаривания или отверждения направляются в спецхранилища.

Ядерные отходы и их утилизация

В зависимости от количества излучаемой энергии ядерные отходы делятся на три категории: низко-, средне- и высокосодержащие.

Низкосодержащие в основном образуются на предприятиях, перерабатывающих урановую руду, и в специальных системах вентиляции и канализации.

Среднесодержащие включают в себя составляющие реакторов, другое оборудование АЭС, загрязненные материалы, спецодежду и т.д.

Высокосодержащие — это отработанное ядерное топливо, а также соединения, образующиеся в процессе его воспроизводства.

Ядерные отходы бывают газообразными, жидкими и твердыми.

Газообразные — это выбросы, содержащие летучие соединения радиоактивных изотопов, а также образующиеся радиоактивные аэрозоли. Их после очистки удаляют в атмосферу через вентиляционную трубу.

Жидкие — это в основном те, что возникают в процессе воспроизводства ядерного топлива. Они, как правило, очищаются от радиоактивных изотопов с помощью методов коагуляции, ионного обмена и выпаривания, концентрируются до минимальных объемов и либо захораниваются в герметичных емкостях из нержавеющей стали, либо переводятся в твердые, не растворимые в воде формы, либо хранятся в специальных резервуарах в виде солевых концентратов для повторного промышленного использования.

Твердые — это не поддающиеся отмыванию загрязненные материалы, использованная спецодежда, а также отходы процесса добычи и переработки урановой руды и производства топлива. Металлические конструкции, предварительно переплавленные, зачастую используют для повторного применения, так как после переплавки все радиоактивные соединения удаляются вместе со шлаками. Другие твердые отходы переносятся в бетонные траншеи, где их цементируют, битумируют, остекловывают или захоранивают в контейнерах из нержавеющей стали. Если их предполагается хранить десятки лет, то в специальных траншеях, а если сотни — то в подземных выработках и в соляных пластах.

Но все перечисленные выше способы утилизации и хранения ядерных отходов не могут считаться ни окончательно надежными, ни абсолютно безопасными, ведь и металл, используемый в качестве «панциря» для смертоносного «мусора», подвергается коррозийному воздействию, бетон и стекло, которыми его укутывают, не вечны, в то время как распад радиоактивных элементов занимает сотни тысяч лет, а объемы накопленных отходов продолжают расти. Предполагается, что в 2030 году в результате работы АЭС по всему миру их накопится более 500 000 тонн.

Именно поэтому специалисты всего мира ищут пути выхода из этой критической ситуации. Экологи яростно выступают в поддержку полной ликвидации всех АЭС и запрещения использования энергии атома, медики с тревогой отмечают растущее число заболеваний и генетических изменений в человеческом организме вследствие возрастающего воздействия радиации. И всех их можно понять, ведь от того, насколько ответственно и серьезно нынешние жители Земли отнесутся к проблеме защиты нашей планеты от возможных аварий, утечек, разгерметизации захораниваемых ядерных отходов, зависит не только наша жизнь и жизнь наши детей, но и всех тех, кто станет нашими далекими потомками.

Аварии

Не прошло и 8 лет со дня пуска первого в мире ядерного реактора, как был открыт счет первым атомным авариям. С 1954 по 1988 год на ядерных реакторах их произошло как минимум 152, а результатом явились различные по масштабам выбросы радиоактивных изотопов, а главное — человеческие жертвы.

Едва ли не самая крупная авария произошла в 1957 году на ядерном реакторе, действующем недалеко от Челябинска. Некоторые ее очевидцы и специалисты-ядерщики и сейчас утверждают, что по мощности она превышала Чернобыльскую в несколько раз. Очень немногие знали тогда о ее размерах и последствиях — ведь сам факт ее наличия совершенно сознательно скрывался советским правительством на протяжении многих десятков лет.

С 1964 по 1979-й случилось несколько аварий на Белоярской АЭС, итогом которых было переоблучение восьми человек, Ленинградская АЭС в 1974—1975 годах также не раз оказывалась в опасных ситуациях, жертвами которых стали три человека. В октябре 82-го произошел взрыв генератора на 1-м энергоблоке Армянской АЭС, приведший к потере энергоснабжения, а в сентябре того же года дала о себе знать АЭС в Чернобыле — там была разрушена центральная топливная сборка на 2-м энергоблоке, в итоге — произошло переоблучение ремонтного персонала и существенный выброс радиоактивных изотопов. В июне 85-го в результате аварии, случившейся на 2-м энергоблоке Балаклавской АЭС, погибло 14 человек. Ну а довершил этот мрачный список «черный апрель» 1986-го. Эта авария стала, пожалуй, единственной, о которой узнал весь мир, правда, далеко не сразу...

В США с 1951 по 1961-й происходили аварии на исследовательско-экспериментальных ядерных реакторах — в Детройте, Сан-Сюзане, а также неподалеку от Айдахо-Фолс. Три человека погибли. В 66-м, опять же близ Детройта, на реакторе «Энрико Ферми» произошло расплавление части активной зоны реактора, подобная же авария случилась в мае 79-го на АЭС «Тримайл Айленд», а в августе того же года на урановом заводе, производящем ядерное топливо, около 1 000 человек получили шестикратную дозу облучения. Две серьезные аварийные ситуации имели место в 1982-м — на реакторе «Джин» близ Рочестера и на реакторе рядом с Онтарио. Еще две аварии были в 1985-м — на АЭС «Саммер-Плант» и АЭС «Индиан-Поинт-2». В 1986-м в результате взрыва резервуара реактора в Уэбберс Фоле погиб один человек. Это далеко не полный перечень всех случившихся атомных аварий даже по двум государствам, и никто не может гарантировать, что этот список когда-нибудь будет завершен...

Чернобыль

Плата за страх

Особую тревогу и озабоченность мировой общественности вызвала, безусловно, Чернобыльская катастрофа. Именно после нее правительства многих стран всерьез задумались о том, насколько вообще целесообразна энергия атома. Хотя сам атом вряд ли можно обвинять в случившемся, ведь результатом всех аварийных ситуаций становились либо ошибка, либо некомпетентность, либо халатность людей.

Апрельская трагедия 15-летней давности также не стала исключением. Причиной этой аварии явился эксперимент, призванный выявить, какое количество электроэнергии способен «выдать» турбогенератор ядерного реактора на ... холостом ходу. При этом были нарушены правила безопасности, допущены отклонения от намеченной программы эксперимента. Персонал ЧАЭС был недостаточно компетентен и мало информирован о возможных последствиях. А потому никакие меры уже не смогли остановить пущенный в «разгон» реактор. Результат известен — мощнейший взрыв, полное разрушение 4-го энергоблока, чудовищной силы пожар и радиоактивный выброс невиданной силы не только от развороченного реактора, но и от продуктов горения, выбрасываемых в атмосферу в виде столба высотой несколько сот метров.

В первый день аварии погиб 31 человек, по прошествии 15 лет с момента катастрофы умерло 55 тысяч ликвидаторов, еще 150 тысяч стали инвалидами, 300 тысяч человек умерли от лучевой болезни, всего повышенные дозы облучения получили 3 миллиона 200 тысяч человек. На сегодня положение на Чернобыльской АЭС таково: из четырех действующих на момент аварии энергоблоков на 1-м и 2-м по решению правительства Украины, планирующего к концу нынешнего года полное закрытие ЧАЭС, проводятся работы по подготовке к снятию их с эксплуатации; защитный саркофаг, возведенный над 4-м энергоблоком, по результатам экспертизы находится в параметрах, близких к норме; а 3-й — осенью этого года был остановлен и отключен от энергосистемы.

РЕКЛАМА
Подписываясь на рассылку вы принимаете условия пользовательского соглашения